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Application of the Nosé-Hoover method to optimization problems
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A solution for continuous optimization problems is proposed using the Nose´-Hoover method. The proposed
method aims for compatibleness, which has been a problem in many past solutions, between two requirements:
searching with a high probability for finding candidates for the optimal points, and searching quickly in a
feasible region. The Nose´-Hoover equation is used, where coordinates of a physical system are treated as the
decision variables in a given optimization problem and a potential function is replaced by2kBT times the
logarithm of an arbitrary density function for coordinate variables. The density can be set such that the visiting
weight of the orbits to the equation has high values at areas where the objective function of the problem has
low ~high! values. Furthermore, a high value for the speed of the orbits can be set independently. Under an
assumption of ergodicity, these values for the visiting weight and speed of the orbits are realized by long-time
limits. Consequently, the two requirements can be satisfied. In numerical simulations assuming an objective
function, the finite-time validity of the properties formulated with the long-time limits and the applicability of
the proposed method to actual optimization problems were confirmed.
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I. INTRODUCTION

Many investigations into optimization problems ha
been done, and corresponding solutions have been app
in a variety of areas, including energy minimization@1# in
physics and chemistry, and design problems in enginee
@2#. The methods for solving these problems must be abl
find an optimal point of a given function by searching acro
a space while avoiding traps, such as local minima, and
find the point efficiently. The space to be searched is ca
the feasible region and the function whose optimal~minimal
or maximal! point is sought is called the objective functio

Two kinds of optimization methods have been used: g
bal and local. Global methods, including genetic algorith
@3#, the simulated annealing method@4#, the trajectory
method@5#, the tunneling method@6#, and the filled function
method@7#, have been developed@8# and have widely been
used to search for global optimal points. Many local metho
@9#, including those developed for the unconstrained opti
zation problem and constrained nonlinear programm
problem, have been studied and improved primarily for
purpose of finding local optimal points efficiently. Howeve
since the requirements for both global search and effic
search are difficult to satisfy with a single general meth
respective efforts have usually been made to solve e
problem individually@10#.

As a solution, one proposal is to use a method tha
designed both to conduct a concentrated search for ca
dates for the optimal points and to search quickly in a f
sible region. To construct such a method, the Nose´-Hoover
method, which has been used in the area of molecular
namics~MD! @11#, is studied in this work. Nose´ @12# con-
ceived a method for temperature control of physical syste
defined by individual Hamiltonians. In the method, the No´
equations are defined~in terms of ‘‘virtual’’ variables and
‘‘real’’ variables! from the ‘‘extended system’’ constructe
by adding a single degree of freedom to the physical syst
It has been shown that using the equations the canon
1063-651X/2001/64~1!/016203~8!/$20.00 64 0162
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distribution at the intended temperature for the physical s
tem is obtained under suitable conditions. By transform
the equation, Hoover@13# derived the Nose´-Hoover equa-
tion, which has a simpler form and leads to intuitive und
standing, and developed the non-Hamiltonian formalis
These extended system methods have been actively stu
and the methods have been applied not only to MD but a
to various areas, including lattice gauge theory, reactive
namics, vibrational relaxation, and a system of class
spins~see Ref.@14#!. In this paper, the Nose´-Hoover method
is applied to optimization problems.

An optimization method using the Nose´-Hoover equation
with a potential energy given by a deformed objective fun
tion is proposed. In this method, the optimal point can
found by evaluating the values of the objective function o
by one; these values are obtained during the traveli
through of the orbit to the ordinary differential equatio
~ODE!. This method is used to try to solve the continuo
optimization problems defined in Euclidean spaces. Sec
II shows that a value for the visiting weight of the orbits a
a value for the speed of the orbits, where these two val
are set arbitrarily and independently from each other, can
realized by long-time limits. These mechanisms enable b
a concentrated search for candidates for the optimal po
and a quick search~Sec. III!. Accordingly, a trade-off rela-
tion between searching weight and searching speed, w
has been a problem in many past solutions, does not e
~Sec. IV!. In Sec. V, the finite-time applicability of this
method is examined in numerical simulations using a sim
objective function. Section VI summarizes the results of t
study.

II. THE NOSÉ -HOOVER METHOD

For a classical physical system expressed with coo
natesq[(q1 , . . . ,qn), momentap[(p1 , . . . ,pn), identical
masses ([ unity!, and potential energyV(q), the Nose´-
Hoover equation@13# is represented by
©2001 The American Physical Society03-1
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I. FUKUDA PHYSICAL REVIEW E 64 016203
q̇i5pi , i 51, . . . ,n,

ṗi52DiV~q!2z pi , i 51, . . . ,n, ~1!

ż5~ ipi22b!/Q,

whereb andQ are positive parameters.~A dot over a letter
denotes time differentiation.! The introduction of variablez,
which corresponds to a friction coefficient~but can be nega
tive as well as positive!, realizes a mechanism for decreasi
the speed,i q̇i5ipi , ~when ipi2*b) and for increasing the
speed~when ipi2&b). As a result, the physical system ca
conform to the canonical distribution@13,14# at temperature
b/(nkB) (kB : Boltzmann’s constant!. ParameterQ can be
considered to control the speed of the response betwe
heat bath at that temperature and the physical system.

Suppose that coordinatesq5(q1 , . . . ,qn) are decision
im

ed
le
g

t
tin
c

ing
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variables in a continuous optimization problem defined in
n-dimensional Euclidean spaceRn. Let D be a feasible re-
gion ~a subset consisting of allqPRn satisfying a given
constraint condition in the problem! andU an objective func-
tion in the problem. The objective functionU is linked to a
potential functionV in Eq. ~1! in this and the following sec-
tions. In this method, during an integration process for O
~1!, we evaluate the values forU„q(t)… individually in order
to be able to adopt the best point as an ‘‘optimal solution
In the following paragraphs, the speed and visiting weig
are defined fororbit t°q(t) to Eq. ~1!, and analyzed to
show that the system enables the setting of these two va
arbitrarily and independently and that these values can
realized by long-time limits.

It is shown that the canonical ensemble averages of fu
tions of (q,p) are obtained under fulfillment of the canonic
distribution to the physical system@12–14#. According to
this, an equation regarding the speed,
d,
lue by a

also has
m traps
ith a
lim
t→`

1

tE0

t

idq/dti2dt5E
Rn

ipi2expF2
n

2b
ipi2GdpY E

Rn
expF2

n

2b
ipi2Gdp5b, ~2!

is derived. The left-hand side of this equation is a long-time average value of the square of thespeed of the orbit, while the
right-hand side can be interpreted as asetting value~or predetermined value! of ~the square of, this term is sometimes omitte!
the speed of the orbit. Namely, it is possible to set an arbitrary value for a speed of the orbits and realize the va
long-time average. A desirable property on the speed can thereby be obtained. Furthermore, the physical system
thermal fluctuations derived from the canonical distribution. The effect of such fluctuations is that effective escape fro
~e.g., local minima ofU) may be expected. This effect would give a different feature from that given by an orbit w
constant speed~e.g., yielded by the Gaussian constraint method@14# or its analog!.

Regarding the visiting weight, the following is similarly obtained for an arbitrary areaA1,Rn:

lim
t→`

1

tE0

t

xA1
~q~ t !!dt5E

A1

expF2
n

b
V~q!GdqY E

Rn
expF2

n

b
V~q!Gdq, ~3!
-

to

s-
ies
me

ht
ent
ng-
where

xA1
:Rn→R, q°H 1 for qPA1

0 otherwise.

The left-hand side of this equation represents a long-t
limit value of the visiting weight~the rate of sojourn time! of
the orbit intoA1, and the right-hand side can be interpret
as the setting value of the visiting weight. Now, a simp
link, V5U, means that the setting value of the visitin
weight is automatically determined byb, which defines the
setting value of the speed@Eq. ~2!#. Thus, such a link is no
suitable for the purpose of arbitrary and independent set
for these values. However, using an arbitrary ‘‘density fun
tion’’ rQ, the replacement of

V52~b/n!ln rQ , ~4!

enables arbitrary setting and its realization for the visit
weight.
e

g
-

Equation~4! brings an arbitrary invariant density with re
spect to theq variable~assuming thatrQ is a smooth, posi-
tive, integrable function on an open set ofRn). That is, the
flow generated by Eq.~1! has an invariant density~the den-
sity of an invariant measure for the flow with respect
Lebesgue measuredx on R2n11) r(q,p,z)5rQ(q)exp@
2(n/2b)(ipi21Qz2)#. On the basis of this fact and an a
sumption of ergodicity in the following sense, the propert
of the orbits are stated simply. That is, the above long-ti
limits exist for rdx—almost everywhere by Birkhoff’s indi-
vidual ergodic theorem@15#; and if the flow is ergodic with
respect to the measurerdx then Eq.~2! and the following
hold for almost every initial value:

lim
t→`

1

tE0

t

xA1
„q~ t !…dt5const3E

A1

rQ~q!dq. ~5!

Therefore, an arbitrary setting value for the visiting weig
of the orbits into each area, where that value is independ
of the setting value for the speed, can be realized by a lo
3-2
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APPLICATION OF THE NOSE´ -HOOVER METHOD TO . . . PHYSICAL REVIEW E64 016203
time limit. Accordingly, the trade-off relation betwee
searching weight and searching speed can be elimin
~Sec. IV!. This paper focuses on a basic study on the eff
of Eq. ~4!, without further extension of the method. Regar
ing Eqs.~2! and~5!, they have been formulated using infini
time. Every solution to ODE~1! is assumed to be defined fo
2`,t,`, and ergodicity is also assumed.

III. APPLICATION TO OPTIMIZATION PROBLEM

In order to apply the Nose´-Hoover method to optimization
problems, a method for setting the visiting weight and sp
of the orbits is examined. In the rest of this paper, minim
zation problems are discussed (2U is used for maximiza-
tion!. Suppose that objective functionU is a smooth,
bounded below map fromRn into R.

If we use the mechanism for arbitrarily setting the visiti
weight of the orbits in order to set high weight values
areas whereU has low values, then we can perform conce
trated searching for candidates for the optimal points;
other words, we can search for them at high probabilities
attainment. Here, candidates for the optimal points~candi-
dates! simply means a set of points that have sufficiently lo
values forU ~points in a neighborhood of a minimal poin
may also be suitable: an appropriate definition is made
each case!. To realize such a setting, let densityrQ be linked
to U such thatrQ has a higher value, as a point shifts
where the value ofU is lower @i.e., U(q1)>U(q2)
⇒rQ(q1)<rQ(q2)#. To link them, for example, let us intro
duce functionQU :R→R. In addition, regarding the con
straint condition, let us introduce functionUD :Rn→R so as
to constrain the orbits into the feasible regionD. Let rQ(q)
5exp@2QU„U(q)1UD(q)…# ~assuming that the condition
for rQ are met!. Then, from Eq.~5!, the setting value of the
visiting weight of the orbits into areaA1 is expressed by

PQ~A1![E
A1

rQ~q!dqY E
Rn

rQ~q!dq

5const3E
A1

exp@2QU„U~q!1UD~q!…#dq.

~6!

Suppose thatQU is an increasing function. To satisfy th
constraint, let us setUD such that it is a constant~e.g., zero!
insideD and has large values outsideD. As a result, forA1
outsideD, if PQ(A1);0 ~by rQ;0) holds then the visiting
weight~viz., rate of sojourn time! of the orbits falls to almost
zero. Namely, the constraint condition is effectively satisfi
Inside D, in contrast,UD has been set as a constant andU
has to be considered. The link stated above betweenrQ and
U is valid by the assumption thatQU is an increasing func-
tion. Thus, Eq.~6! shows thatPQ , which can be understoo
as a set function for representingsearching weightfor each
area inRn or as a probability for that area, also has a hi
value atA1 whereU has low values. These relationships a
emphasized asQU(u) increases rapidly with increasingu.
Adjustment ofQU enables deformation of proportions fo
01620
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undulation ofU ~see Sec. V!. In this way, the setting value
for the visiting weight of the orbits insideD can be deter-
mined byU andQU .

Let us consider the speed of the orbits assearching speed
defined in the feasible region. This is estimated byidq/dti2

(} kinetic energy!, and its value can be set byb.0 @Eq.
~2!#. A high searching speed is desirable.

IV. TRADE-OFF BETWEEN SEARCHING WEIGHT AND
SEARCHING SPEED

We require Eq.~4! in order to set searching weight arb
trarily, but we do not require it if we only set a high searc
ing weight for candidates~Sec. III!. A simple link V5U
using a low value forb serves the latter purpose@Eq. ~3!#. If
this is done, however, searching speed decreases@Eq. ~2!#.
Conversely, a high-probability search for candidates is
done if the link with a high value forb is used.

In approaches based on stochastic methods, the Metr
lis algorithm ~MA ! @16# is a representative technique that
capable of adjusting searching weight.@In the algorithm, the
acceptance probability ofq8 subsequent to pointq is defined
by min$1,exp@2DU(q)/T#%, where DU(q)[U(q8)2U(q)
andT.0 is a control parameter called temperature. Consi
the searching weight to be determined by the equilibri
distribution exp(2U/T)3const.] Such atrade-off relation
between the searching weight and the searching speed
comes a problem when using MA to solve optimizati
problems. If the value of parameterT is lowered, then an
almost ideal distribution is obtained asT→0, which enables
high-probability searches for candidates. WhenT is low,
however, under adoption oflocal generation@a procedure
where q8 is selected from a certain defined neighborho
N(q) of q#, escape fromlocal trap becomes difficult@i.e., as
point q approaches nearq0 such thatU(q0),U(q08) for all

FIG. 1. Objective functionU. Feasible region is a diskiqi
<0.5.
3-3
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I. FUKUDA PHYSICAL REVIEW E 64 016203
q08PN(q0)2$q0%, most of the selected points areq8’s with
DU(q).0; the acceptance probabilities of these points t
become exp@2DU(q)/T# and low asT→0#. This thereby de-
creases the searching speed. Conversely, ifT is high, the

TABLE I. Parameters for setting values.

Visiting weight
Square of speed

bCase No. a1 a2

1 1/600 2.0 40.0
2 1/900 214.0 40.0
3 1/600 2.0 10.0
01620
s

situation is analogous to that mentioned in the preced
paragraph; the acceptance procedure in the limit ofT→`
corresponds to a random search.

The simulated annealing method@4# employs temperature
scheduling to solve this problem. The goal is efficie
searching during a gradual change of the distribution tow
the ideal one by lowering the value of control parameterT.
Variations of the algorithm and successful results on th
application have been reported~e.g., Ref@17#!. From a the-
oretical aspect, convergence to the ideal distribution, a
discussed in Refs.@18,19#, ensures effectiveness for long
time searching. However, as long as the local generatio
assumed and an acceptance rule is defined such that the
makes a displacement forDU(q).0 smaller ~viz., accep-
f
ond to

is
FIG. 2. ~a! Simulation results for visiting weight of orbit in case 1. The frequency of visits by the orbit,nn /N, for each meshn is shown.
nn : the number of times that the orbit passes meshn. N[109: the total number of time steps.~b! Setting values for the visiting weight o
orbit in case 1. The value is the integral of normalizedrQ on each mesh. The points for the highest, second, and third peaks corresp
the global minimal, second lowest minimal, and third minimal points of the objective function, respectively.~c! Simulation results for the
square of speed of orbit in case 1. The time average for this square of speed,Kav, is shown as a function of time steps. The setting value
40.0.
3-4
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APPLICATION OF THE NOSE´ -HOOVER METHOD TO . . . PHYSICAL REVIEW E64 016203
tance probability ofq8 with DU(q).0 becomes smaller! as
a certain defined control parameter is varied, the problem
the local trap cannot be avoided and becomes increasi
noticeable in the process, in principle. Owing to such a r
son, more devices are usually employed for a more effec
resolution@20#.

The Nose´-Hoover method stated in the previous sectio
does not have such a trade-off relation, because the searc
weight and the searching speed can be set independentl~by
the visiting weight and speed, respectively, of the orbi!.
This follows from the fact that the invariant density deriv
from the simple replacement by Eq.~4! has the form sepa
rated into theq component and the (p,z) component without
common termkBT. At the beginning of the process, we ca
set a high searching speed and set an advantageous sea
weight for resolving a problem. Moreover, the method do
not result in a smaller displacement as time progresses.
mechanism for increasing the speed~Sec. II! works effec-
tively when the small displacement continues. A more f
mal statement is thatiDq(t)i[idq/dtiDt, which is the
principal quantity iniq82qi[iq(t1Dt)2q(t)i (q8 is the
next point computed by a numerical integration!, does not
end in zero~for almost every initial value!, because the long
time average ofiDq(t)i2 becomes a setting value multiplie
by Dt2.0. The infinite time used in the theoretical form
lation is required to represent a probabilistic assurance, s
as what is called the law of large numbers.

V. NUMERICAL SIMULATION

As described in the previous sections, the effectual pr
erties of the orbits were formulated using infinite time.
comparison, only finite time is available for applying th
method to an actual optimization problem; we define an
tial condition to the ODE and continue a numerical integ
tion of the equation until a suitable predetermined stopp
condition is satisfied. This section describes an examina
of the application of the method to a simple optimizati
problem. In numerical simulations on the ODE, the fini
time applicability of the method was examined by verifyin
the validity within a finite time for Eqs.~2! and~5!. Further-
more, the effect expected from differences in setting val
for the visiting weight and speed of the orbits was examin

A. Simulation conditions

Objective functionU was set as the summation of thre
Gaussian form functions defined on a plane~viz., n52), and
feasible regionD was a disk with its center at the origin an
with a radius ofr 0,

U~q1 ,q2!52 (
m51

3

amexp~2bmiq2cmi2!, ~7!

D5$q[~q1 ,q2!PR2uiqi<r 0%. ~8!

The parameters werea1510.0, a256.0, a354.0, b15b2
5b35100.0, c15(20.212,0.212),c25(0.290,0.0776),c3
01620
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5(20.0776,20.290), andr 050.5. ~See Fig. 1.! Quantitiesq
andU(q), and timet were treated as dimensionless, for t
sake of simplicity.

In an application of ODE~1!, the functions for constrain-
ing the orbits intoD and for setting the values of the visitin
weight of the orbits, as described in Sec. III, were defined
follows:

UD~q!5H 0 for qPD

d1~ iqi2r 0!d2 otherwise,
~9!

QU~u!5a1~u2a2!3. ~10!

The parameters wered151010, d258 for UD , and Q
51023 in Eq. ~1!. Using the parameters for determining se
ting values,a1 and a2 for the visiting weight of the orbits
and b for the square of the speed of the orbits, three ca
were simulated~Table I!. For case 1 and case 2 the setti
values of the speed were identical but those of the visit

FIG. 3. Visiting weight of orbit in case 2:~a! simulation results,
and ~b! setting values~the points for the highest, second, and thi
peaks correspond to the global minimal, second lowest minim
and third minimal points of the objective function, respectivel!.
Calculations are similar to those in case 1@Figs. 2~a! and 2~b!#.
3-5
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I. FUKUDA PHYSICAL REVIEW E 64 016203
weight were different. Conversely, for case 1 and case 3,
setting values of the visiting weight were identical, but tho
of the speed were different.

In numerical integrations of the ODE, the fourth-ord
Runge-Kutta method with a unit time step ofDt5531025

was used along with an initial value ofq1(0)50.0, q2(0)
50.1, p1(0)5Ab/2, p2(0)50.0, andz(0)50.0.

Both sides of Eq.~5! were evaluated on each small squa
mesh~the sizes were 0.5 for the radius ofD and 0.005 for the
side of the mesh!. The left-hand side of the equation fo
meshn was computed using thefrequency of visits~viz.,
visiting weight on discrete time! by an orbit,nn /N, wherenn

is the number ofn’s such thatq(nDt)Pn andN is the total
number of time steps. The right-hand side, the setting va
of the visiting weight, was evaluated by the integral of t
densityrQ @viz., PQ(n) in Eq. ~6!#. Regarding Eq.~2!, a time
average,Kav(t)[(1/t)*0

t idq/dsi2ds, was calculated for es
timating the left-hand side of the equation. The right-ha
side, the setting value of the speed, is equal to input par
eterb.

B. Simulation results

In case 1, for the visiting weight of the orbit, Fig. 2~a!
shows simulation results~by the frequency of visits withN
5109) and Fig. 2~b! shows the setting values. The results
the simulation are visibly in good agreement with the sett
values. Notice that the frequency of visits outsideD is about
zero. Namely, the constraint was effectively satisfied. For
speed, Fig. 2~c! shows simulation results forKav as a func-
tion of time steps. It converged to a setting value of 40.0
addition, simulations were performed for several initial v
ues chosen randomly withinqPD, ipi,10Ab, and uzu
,10. In these cases, results similar to case 1 were obtai
These results confirm the finite-time validity for Eqs.~2! and
~5! along with the independence from the initial values.

FIG. 4. Simulation results for the square of speed of orbit
case 3. The time average for this square of speed,Kav, is shown as
a function of time steps. The setting value is 10.0.
01620
e
e

e

d
-

f
g

e

n
-

d.

In case 2, Fig. 3 shows simulation results and the set
values for the visiting weight of the orbit. An agreeme
between them can be seen. Furthermore, the simulation
sults for the speed showed convergence to the setting va
similar to case 1. In case 3, the simulation results for

FIG. 5. Trajectories for 23105 time steps. The symbols indi-
cates the global minimal point, andn indicates local minimal
point: ~a! case 1,~b! case 2, and~c! case 3.
3-6
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APPLICATION OF THE NOSE´ -HOOVER METHOD TO . . . PHYSICAL REVIEW E64 016203
speed converged to a setting value of 10.0~Fig. 4! and those
for the visiting weight showed agreement with the sett
values, as in case 1. These results confirm that the vis
weight and speed can be set independently and be realiz
individual setting values.

The difference in frequency of visits between case 1@Fig.
2~a!# and case 2@Fig. 3~a!# was caused by a difference in th
setting values of the visiting weight of the orbits between
two cases. In a comparison of Figs. 2~b! and 3~b!, the setting
values for case 1 can be seen to reflect the value of
objective function more sensitively than those for case
@That is, much larger values for the visiting weight are
signed to areas whereU has low values. The points for th
highest peak, second peak, and third peak in Figs. 2~b! and
3~b! correspond to the points for the global minimum, s
ond lowest minimum, and third minimum ofU, respec-
tively.# The simulation results untilN5109 time steps show
that the orbit in case 1 certainly visits near the optimal~glo-
bal minimal! point at a high frequency of visits, while th
orbit in case 2 visits all three minimal points more equa
This means that a difference in the setting value of the
iting weight of the orbits indeed affects the frequency
visits. Such an effect appeared within a shorter length
time. Figure 5 shows trajectories for 23105 time steps for
the orbits and the minimal points otherwise determined.
indicated in Figs. 2~a! and 3~a!, behavior for searchin
minima in case 1@Fig. 5~a!# is different from that in case
@Fig. 5~b!#.

Case 1 and case 3 are different concerning the se
value of the speed of the orbits. The trajectories show
searching in case 1@Fig. 5~a!# was performed over a large
area than that done in case 3@Fig. 5~c!# for the same period
of time. This means that the searching speed in case 1, w
employs a larger setting value for the speed, is indeed la
than that in case 3.

The theoretical formulation of the properties of the orb
has been done on the assumption that the system is erg
A mathematical proof of ergodicity for a given system
widely known to be difficult. The agreement between sim
lation results and setting values shown above for both
visiting weight and the speed of the orbits supports ergo
ity in this system. In a naive sense, ergodicity can be
pected as the system grows complicated~e.g., the system i
not an ideal one such as an integrable system, it consis
many degrees of freedom, or it has strong nonlinearity!. This
is also supported in numerical studies on the Nose´-Hoover
equation and the Nose´ equation@21–23#. Accordingly, er-
godicity is expected for more complicated systems than
used in the present study. For givenn andrQ , under adop-
tion of Eq. ~4!, the effect of parametersQ and b on the
ergodicity is an important subject.
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VI. CONCLUSION

A solution for continuous optimization problems has be
proposed using the Nose´-Hoover method. This method en
ables compatibleness, which has been a problem in m
past solutions, of the following two requirements: search
with a high probability for finding candidates for the optim
points, and searching quickly in a feasible region. Name
this method does not have trade-off relation between sea
ing weight and searching speed.

In the Nose´-Hoover equation used in this work, coord
nates of a physical system are regarded as the decision
ables in a given optimization problem and a potential fu
tion is linked to the objective function. To set the visitin
weight of the orbits to the equation independently from
speed of the orbits, the potential function has been repla
by 2kBT times the logarithm of an arbitrary density functio
for coordinate variables. It has been demonstrated that
density function gives an invariant density with respect to
coordinate variables and that the function can determine
visiting weight of the orbits. To search with a high probab
ity for finding candidates for the minimal points, a meth
for setting the density function has been introduced so
the visiting weight has high values at areas where the ob
tive function has low values. The speed of the orbits can
set by an arbitrary parameter. With these devices and
assumption of ergodicity, it has been shown that the val
of the visiting weight and speed of the orbits can be
arbitrarily and independently, and that these values are r
ized by a long-time limit and a long-time average, resp
tively.

For an objective function given by the sum of thr
Gaussian form functions on a plane, numerical simulati
were carried out. The finite-time validity of the orbits’ prop
erties formulated using the long-time limits has been ve
fied. Furthermore, in simulations for several setting values
the visiting weight and speed of the orbits, the expected
fect of differences in those values on the frequency of vi
and on searching speed has been confirmed. These re
show the possibilities for efficient resolution using the p
posed method on actual optimization problems.

ACKNOWLEDGMENTS

The author thanks Dr. Umebu for valuable discussio
and his encouragement and critical reading of the first v
sion of this manuscript. Author also thanks Kazuyos
Minami, Shigeru Kameda, Shoichi Masuda, and Ichiro S
zuki for their useful discussions.
@1# Global Minimization of Nonconvex Energy Functions: Mo
lecular Conformation and Protein Folding, edited by P.M.
Pardalos, D. Shalloway, and G. Xue~American Mathematical
Society, Providence, 1996!.

@2# Optimization in Computer-Aided Design, edited by J.S. Gero
- ~North-Holland, Amsterdam, 1985!.
@3# D.E. Goldberg,Genetic Algorithms in Search, Optimization

and Machine Learning ~Addison-Wesley, Reading, MA,
1989!.

@4# S. Kirkpatrick, C.D. Gelatt, Jr., and M.P. Vecchi, Science220,
3-7



y
an

l

.

h.

ch.

n

I. FUKUDA PHYSICAL REVIEW E 64 016203
671 ~1983!.
@5# F.H. Branin, Jr., IBM J. Res. Dev. 504~1972!.
@6# A.V. Levy and A. Montalvo, SIAM~Soc. Ind. Appl. Math.! J.

Sci. Stat. Comput.6, 15 ~1985!.
@7# R.P. Ge, J. Comput. Math.5, 1 ~1987!.
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