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A solution for continuous optimization problems is proposed using thé Noswer method. The proposed
method aims for compatibleness, which has been a problem in many past solutions, between two requirements:
searching with a high probability for finding candidates for the optimal points, and searching quickly in a
feasible region. The Nosidoover equation is used, where coordinates of a physical system are treated as the
decision variables in a given optimization problem and a potential function is replacedkfy times the
logarithm of an arbitrary density function for coordinate variables. The density can be set such that the visiting
weight of the orbits to the equation has high values at areas where the objective function of the problem has
low (high) values. Furthermore, a high value for the speed of the orbits can be set independently. Under an
assumption of ergodicity, these values for the visiting weight and speed of the orbits are realized by long-time
limits. Consequently, the two requirements can be satisfied. In numerical simulations assuming an objective
function, the finite-time validity of the properties formulated with the long-time limits and the applicability of
the proposed method to actual optimization problems were confirmed.
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I. INTRODUCTION distribution at the intended temperature for the physical sys-
tem is obtained under suitable conditions. By transforming
Many investigations into optimization problems havethe equation, Hoovef13] derived the Nosé¢loover equa-
been done, and corresponding solutions have been applieon, which has a simpler form and leads to intuitive under-
in a variety of areas, including energy minimizatifhj in standing, and developed the non-Hamiltonian 'formalisrr.].
physics and chemistry, and design problems in engineerinﬁhese extended system methods_ have been actively studied,
[2]. The methods for solving these problems must be able tgnd the methods have been applied not only to MD but also
find an optimal point of a given function by searching acrosgl0 various areas, including lattice gauge theory, reactive dy-
a space while avoiding traps, such as local minima, and t§amics, vibrational relaxatlon, and a system of classical
find the point efficiently. The space to be searched is calle§Pins(see Ref[14]). In this paper, the Noseloover method
the feasible region and the function whose optirmainimal i applied to optimization problems. _
or maxima) point is sought is called the objective function. ~An optimization method using the Noséover equation
Two kinds of optimization methods have been used: gloWith a potential energy given by a deformed objective func-
bal and local. Global methods, including genetic algorithmtion is proposed. In this method, the optimal point can be
[3], the simulated annealing methdel], the trajectory found by evaluating the values of.the objepnve function one
method[5], the tunneling methofB], and the filled function by one; these values are obtained during the traveling-
method[7], have been developd@] and have widely been through of the orbit to the ordinary differential equation
used to search for global optimal points. Many local method$ODE). This method is used to try to solve the continuous
[9], including those developed for the unconstrained optimi-Optimization problems defined in Euclidean spaces. Section
zation problem and constrained nonlinear programming! shows that a value for the visiting weight of the orbits and
problem, have been studied and improved primarily for thed value for the speed of the orbits, where these two values
purpose of finding local optimal points efficiently. However, are set arbitrarily and independently from each other, can be
since the requirements for both global search and efficienfi€alized by long-time limits. These mechanisms enable both
search are difficult to satisfy with a single general method@ concentrated search for candidates for the optimal points
respective efforts have usually been made to solve eachnd a quick searctSec. Il). Accordingly, a trade-off rela-
problem individually[10]. tion between searching weight and searching speed, which
As a solution, one proposal is to use a method that i$!as been a problem in many past solutions, does not exist
designed both to conduct a concentrated search for candiSec. 1V). In Sec. V, the finite-time applicability of this
dates for the optimal points and to search quickly in a fea/method is examined in numerical simulations using a simple
sible region. To construct such a method, the Ndsever objective function. Section VI summarizes the results of this
method, which has been used in the area of molecular dystudy.
namics(MD) [11], is studied in this work. Nosgl2] con-

ceived a method for temperature control of physical systems Il. THE NOSE -HOOVER METHOD

defined by individual Hamiltonians. In the method, the Nose

equations are define@n terms of “virtual” variables and For a classical physical system expressed with coordi-
“real” variables) from the “extended system” constructed natesq=(qq, . .. ,d,), momentagp=(p4, ... ,p,), identical

by adding a single degree of freedom to the physical systenmasses £ unity), and potential energy¥(q), the Nose
It has been shown that using the equations the canonic&loover equatiof13] is represented by
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: : variables in a continuous optimization problem defined in an

a=pi. 1=L...n n-dimensional Euclidean spad®’. Let D be a feasible re-
. gion (a subset consisting of alie R" satisfying a given
pi=—-DiV(a)=¢pi, i=1,...n, (1) constraint condition in the problérandU an objective func-
_ tion in the problem. The objective functidd is linked to a
=(|pl*>-P)IQ, potential functionV in Eq. (1) in this and the following sec-

- tions. In this method, during an integration process for ODE
where andQ are positive parametergA dot over a letter (1) we evaluate the values far(q(t)) individually in order
denotes time differentiationThe introduction of variablé, g pe able to adopt the best point as an “optimal solution.”
which corresponds to a friction coefficiefiiut can be nega- |n the following paragraphs, the speed and visiting weight
tive as well as positive realizes a mechanism for decreasing gre defined fororbit t—q(t) to Eq. (1), and analyzed to
the speed|q||=|pl, (when|p|>=B) and for increasing the show that the system enables the setting of these two values
speed(when||p||?< ). As a result, the physical system can arbitrarily and independently and that these values can be
conform to the canonical distributidri3,14] at temperature realized by long-time limits.

Bl(nkg) (kg: Boltzmann’'s constait ParameteiQ can be It is shown that the canonical ensemble averages of func-
considered to control the speed of the response betweentians of (q,p) are obtained under fulfillment of the canonical
heat bath at that temperature and the physical system. distribution to the physical systefri2—14. According to
Suppose that coordinates=(q,, ...,q,) are decision this, an equation regarding the speed,
|

17 n n
I —f d/dtzdtzf 2 p[—— 2ld /f ;{—— Z}d =B, 2
fim 2 |, lda/d| lPl7exe = o5lpl|dp /| exq —52llpl*|dp=4 )

is derived. The left-hand side of this equation is a long-time average value of the squarespédukeof the orhjtwhile the
right-hand side can be interpreted asedting valugor predetermined valy®f (the square of, this term is sometimes omitted,
the speed of the orbit. Namely, it is possible to set an arbitrary value for a speed of the orbits and realize the value by a
long-time average. A desirable property on the speed can thereby be obtained. Furthermore, the physical system also has
thermal fluctuations derived from the canonical distribution. The effect of such fluctuations is that effective escape from traps
(e.g., local minima ofU) may be expected. This effect would give a different feature from that given by an orbit with a
constant spee(k.g., yielded by the Gaussian constraint metfib§ or its analog.

Regarding the visiting weight, the following is similarly obtained for an arbitrary &gaR":

n
dg / fRnexp[—EV(m}dq, 3

n

L N
Tlm;foml(q(t))dt— fAlexp[ ﬂv(q)

where Equation(4) brings an arbitrary invariant density with re-
spect to theg variable (assuming thapg is a smooth, posi-
. 1 for qeA, tive, integrable function on an open setRf). That is, the
Xa, RI—=R, q— 0 otherwise. flow generated by Eq.) has an invariant densitfthe den-

sity of an invariant measure for the flow with respect to
The left-hand side of this equation represents a long-timé-€besgue rr;easugelx on R2n+1)_ p(a,p,) =pola)exd
limit value of the visiting weightthe rate of sojourn timeof ~ —(V2B)([p[[“+Q¢Z%)]. On the basis of this fact and an as-
the orbit intoA,, and the right-hand side can be interpretedSUmption of ergodicity in the following sense, the properties
as the setting value of the visiting weight. Now, a simple©f the orbits are stated simply. That is, the above long-time
link, V=U, means that the setting value of the visiting I|m|ts exist fqrpdx—almost everywhere by_Blrkhoﬁ.’s |n.d|—
weight is automatically determined b8, which defines the Vidual ergodic theoreri15]; and if the flow is ergodic with
setting value of the sped&q. (2)]. Thus, such a link is not espect to the measugedx then Eq.(2) and the following
suitable for the purpose of arbitrary and independent settinffold for almost every initial value:
for these values. However, using an arbitrary “density func-

T 1} 1 T
tion” pq, the replacement of lim ;JO xa,(q(t))dt=consi J; po(a)dg. (9
T—00 1
V=—(B/n)Inpq, 4
Therefore, an arbitrary setting value for the visiting weight

enables arbitrary setting and its realization for the visitingof the orbits into each area, where that value is independent
weight. of the setting value for the speed, can be realized by a long-
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time limit. Accordingly, the trade-off relation between
searching weight and searching speed can be eliminated
(Sec. IV). This paper focuses on a basic study on the effect
of Eq. (4), without further extension of the method. Regard-
ing Egs.(2) and(5), they have been formulated using infinite
time. Every solution to ODE1) is assumed to be defined for
—o<t<w, and ergodicity is also assumed.

Ill. APPLICATION TO OPTIMIZATION PROBLEM

In order to apply the Noskloover method to optimization
problems, a method for setting the visiting weight and speed
of the orbits is examined. In the rest of this paper, minimi-
zation problems are discussed | is used for maximiza-
tion). Suppose that objective functiokl is a smooth,
bounded below map froR" into R.

If we use the mechanism for arbitrarily setting the visiting
weight of the orbits in order to set high weight values to
areas wherd&J has low values, then we can perform concen-
trated searching for candidates for the optimal points; in
other words, we can search for them at high probabilities of
attainment. Here, candidates for the optimal poifuandi- FIG. 1. Objective functionU. Feasible region is a diskq|
datesg simply means a set of points that have sufficiently low=<0-5-
values forU (points in a neighborhood of a minimal point
may also be suitable: an appropriate definition is made inndulation ofU (see Sec. Y. In this way, the setting value
each case To realize such a setting, let density be linked ~ for the visiting weight of the orbits insid® can be deter-
to U such thatpg has a higher value, as a point shifts to mined byU and®y,.
where the value ofU is lower [i.e., U(q;)=U(q,) Let us consider the speed of the orbitssaarching speed
= po(d1) <po(dz)]. To link them, for example, let us intro- defined in the feasible region. This is estimated|dy/dt||?
duce function®,:R—R. In addition, regarding the con- (> kinetic energy, and its value can be set k>0 [Eq.
straint condition, let us introduce functidh, :R"—R so as  (2)]. A high searching speed is desirable.
to constrain the orbits into the feasible regibnlLet p(q)
=ex[—0y(U(q) +Up(a))] (assuming that the conditions \\, tpApE-OFF BETWEEN SEARCHING WEIGHT AND
fqr.gQ are me)t. Then, frqm I_Eq.(5), the §ett|ng value of the SEARCHING SPEED
visiting weight of the orbits into areA is expressed by

We require Eq(4) in order to set searching weight arbi-
trarily, but we do not require it if we only set a high search-
Pq(Al)Ef Pq(Q)dQ/ J Po(a)dq ing weight for candidate¢Sec. Il). A simple link V=U
A R using a low value fo3 serves the latter purpo$Eg. (3)]. If
this is done, however, searching speed decredsgs(2)].
=00n57><f exd —0y(U(q)+Up(qg))]dq. Conversely, a high-probability search for candidates is not
A done if the link with a high value fog is used.
(6) In approaches based on stochastic methods, the Metropo-
lis algorithm (MA) [16] is a representative technique that is
Suppose tha® is an increasing function. To satisfy the capable of adjusting searching weight the algorithm, the
constraint, let us sdfl; such that it is a constaite.g., zerd  acceptance probability @f’ subsequent to poirtis defined
insideD and has large values outsi@e As a result, forA; by min{1l,exd—AU(q)/T]}, where AU(q)=U(q’)—U(q)
outsideD, if Po(A;1)~0 (by po~0) holds then the visiting andT>0 is a control parameter called temperature. Consider
weight(viz., rate of sojourn timeof the orbits falls to almost the searching weight to be determined by the equilibrium
zero. Namely, the constraint condition is effectively satisfied distribution expEU/T)Xconst.] Such atrade-off relation
Inside D, in contrast,Up has been set as a constant &hd between the searching weight and the searching speed be-
has to be considered. The link stated above betwegand comes a problem when using MA to solve optimization
U is valid by the assumption th& is an increasing func- problems. If the value of parametdris lowered, then an
tion. Thus, Eq(6) shows thaPg, which can be understood almost ideal distribution is obtained ds-0, which enables
as a set function for representisgarching weighfor each  high-probability searches for candidates. WhEris low,
area inR" or as a probability for that area, also has a highhowever, under adoption dbcal generation[a procedure
value atA; whereU has low values. These relationships arewhereq’ is selected from a certain defined neighborhood
emphasized a®)(u) increases rapidly with increasing N(q) of q], escape frontocal trap becomes difficulfi.e., as
Adjustment of ® enables deformation of proportions for point g approaches neay, such thatU(qgy)<U(qg) for all
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TABLE |. Parameters for setting values.

Visiting weight

Square of speed
Case No.

ag an B
1 1/600 2.0 40.0
2 1/900 —-14.0 40.0
3 1/600 2.0 10.0

do e N(go) —{do}, most of the selected points agé’s with
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situation is analogous to that mentioned in the preceding
paragraph; the acceptance procedure in the limiTef«
corresponds to a random search.

The simulated annealing methpdl] employs temperature
scheduling to solve this problem. The goal is efficient
searching during a gradual change of the distribution toward
the ideal one by lowering the value of control paramé8ter
Variations of the algorithm and successful results on their
application have been reporté¢el.g., Ref[17]). From a the-
oretical aspect, convergence to the ideal distribution, as is
discussed in Refd.18,19, ensures effectiveness for long-

AU(qg)>0; the acceptance probabilities of these points thusime searching. However, as long as the local generation is

become exp-AU(q)/T] and low asT—0]. This thereby de-
creases the searching speed. Conversely, i high, the

(a)

10* (Visiting weight): simulation

assumed and an acceptance rule is defined such that the rule
makes a displacement fa&xU(q)>0 smaller(viz., accep-

(b)

10 (Visiting weight): setting values

(c)
40.01 : . . :
® 40,00
39.99 s ' 1 s
0 2 4 6 8 10

107 Time step

FIG. 2. (a) Simulation results for visiting weight of orbit in case 1. The frequency of visits by the arbil\, for each mesh is shown.

n,: the number of times that the orbit passes meshi=10°: the total number of time stepgb) Setting values for the visiting weight of

orbit in case 1. The value is the integral of normalizegdon each mesh. The points for the highest, second, and third peaks correspond to
the global minimal, second lowest minimal, and third minimal points of the objective function, respecttyebymulation results for the
square of speed of orbit in case 1. The time average for this square of &pgeid, shown as a function of time steps. The setting value is
40.0.
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tance probability ofy’ with AU(q)>0 becomes smallgas

a certain defined control parameter is varied, the problem of
the local trap cannot be avoided and becomes increasingly
noticeable in the process, in principle. Owing to such a rea-
son, more devices are usually employed for a more effective
resolution[20].

The NoseHoover method stated in the previous sections
does not have such a trade-off relation, because the searching
weight and the searching speed can be set independemtly
the visiting weight and speed, respectively, of the ojbits
This follows from the fact that the invariant density derived
from the simple replacement by E@l) has the form sepa-
rated into theg component and thep({) component without
common ternkgT. At the beginning of the process, we can
set a high searching speed and set an advantageous searching
weight for resolving a problem. Moreover, the method does
not result in a smaller displacement as time progresses. The
mechanism for increasing the speggkc. 1) works effec-
tively when the small displacement continues. A more for-
mal statement is thafAq(t)||=|/dg/dt]|At, which is the
principal quantity inflq’ —af=[q(t+At)—q(t)[ (a" is the
next point computed by a numerical integrajiodoes not
end in zerafor almost every initial valug because the long-
time average ofAq(t)]|> becomes a setting value multiplied
by At?>>0. The infinite time used in the theoretical formu-
lation is required to represent a probabilistic assurance, such
as what is called the law of large numbers.

(@

10* (Visiting weight): simulation

10* (Visiting weight): setting values

V. NUMERICAL SIMULATION

As described in the previous sections, the effectual prop-
erties of the orbits were formulated using infinite time. In
comparison, only finite time is available for applying the
method to an actual optimization problem; we define an ini- FIG. 3. Visiting weight of orbit in case 2a) simulation results,
tial condition to the ODE and continue a numerical integra_and (b) Setting Valueithe pOintS for the highest, Second, and third
tion of the equation until a suitable predetermined stopping?®aks correspond to the global minimal, second lowest minimal,
condition is satisfied. This section describes an examinatiog"d third minimal points of the objective function, respectiyely
of the application of the method to a simple optimization Calculations are similar to those in cas¢Figs. 2a) and 2b)].
problem. In numerical simulations on the ODE, the finite-

time applicability of the method was examined by verifying =(—0.0776:-0.290), and = 0.5.(See Fig. 1. Quantitiesq

the validity within a finite time for Eqs(2) and(5). Further- andU(q), and timet were treated as dimensionless, for the
more, the effect expected from differences in setting valuesake of simplicity.

for the visiting weight and speed of the orbits was examined. In an application of ODE1), the functions for constrain-

ing the orbits intdD and for setting the values of the visiting

A Simulation conditions }/(\gcl—:ilc?vr\;;of the orbits, as described in Sec. I, were defined as

Obijective functionU was set as the summation of three
Gaussian form functions defined on a pldne., n=2), and 0 for qeD
feasible regiorD was a disk with its center at the origin and Up(g)= d . 9)
with a radius ofr, dy(flall=ro)®  otherwise,

3 Oy(u)=ay(u—ay)® 10
Uq1,02)= = 2 anexp(~byla—cal®), (7 u(U)=ay(u=ay) (10)

The parameters were, =10 d,=8 for Up, and Q
_ ’ =102 in Eq.(1). Using the parameters for determining set-
D={a=(d1.,92) € R¥ql|<ro}. ®  ting values,a; and a, for the visiting weight of the orbits
and B for the square of the speed of the orbits, three cases
were simulatedTable ). For case 1 and case 2 the setting
values of the speed were identical but those of the visiting

The parameters wera;=10.0, a,=6.0, a3=4.0, b;=b,
=b3=100.0, c;=(—0.212,0.212),c,=(0.290,0.0776) C5
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10.01 T T T T

L® 1000 -

107 Time step

FIG. 4. Simulation results for the square of speed of orbit in
case 3. The time average for this square of spKeg,is shown as
a function of time steps. The setting value is 10.0.

weight were different. Conversely, for case 1 and case 3, the
setting values of the visiting weight were identical, but those
of the speed were different.

In numerical integrations of the ODE, the fourth-order
Runge-Kutta method with a unit time step Aft=5x10"°
was used along with an initial value of;(0)=0.0, g,(0)
=0.1, p;(0)=B/2, p,(0)=0.0, andZ(0)=0.0.

Both sides of Eq(5) were evaluated on each small square
mesh(the sizes were 0.5 for the radiusDfand 0.005 for the
side of the mesh The left-hand side of the equation for
mesh v was computed using threquency of visitqviz., 0.6 ——— —
visiting weight on discrete timeby an orbit,n,, /N, wheren,,
is the number ofi’s such thatg(nAt) e » andN is the total
number of time steps. The right-hand side, the setting value

03 % g ’ .
of the visiting weight, was evaluated by the integral of the I V& ]

densitypq [viz., Po(7) in Eq.(6)]. Regarding Eq(2), a time
average K (t)=(11t) [t dg/ds|?ds, was calculated for es-

o ¥
timating the left-hand side of the equation. The right-hand > 00
side, the setting value of the speed, is equal to input param-
eter . M
-03
B. Simulation results %\\< %AJ
In case 1, for the visiting weight of the orbit, Fig(a2 —0sl_ . . .
shows simulation resultdy the frequency of visits wittN -0.6 -0.3 0.0 0.3 0.6
=10% and Fig. Zb) shows the setting values. The results of g,
the simulation are visibly in good agreement with the setting ] ] ] o
values. Notice that the frequency of visits outsiiés about FIG. 5. Trajectories for X 10° time steps. The symbeD indi-

zero. Namely, the constraint was effectively satisfied. For th&2t€S the global minimal point, and indicates local minimal
speed, Fig. @) shows simulation results fdf,, as a func- point: (&) case 1,(b) case 2, andc) case 3.

tion of time steps. It converged to a setting value of 40.0. In

addition, simulations were performed for several initial val- In case 2, Fig. 3 shows simulation results and the setting
ues chosen randomly withige D, |p|<10JB, and ||  values for the visiting weight of the orbit. An agreement
<10. In these cases, results similar to case 1 were obtainebetween them can be seen. Furthermore, the simulation re-
These results confirm the finite-time validity for EG®) and  sults for the speed showed convergence to the setting value,
(5) along with the independence from the initial values. similar to case 1. In case 3, the simulation results for the
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speed converged to a setting value of 1E1g. 4) and those VI. CONCLUSION
for the visiting weight showed agreement with the setting A solution for continuous optimization problems has been
values, as in case 1. These results confirm that the visitina{) utl INUoUS optimization p

weight and speed can be set independently and be realized oposed usir}g the Noééolover method. This methoq en-
individual setting values. ables compatibleness, which has been a problem in many

The difference in frequency of visits between cadéid. pest solytions, of th_e folloyving two requirements: searehing
2(a)] and case PFig. 3a)] was caused by a difference in the WI'[.h a high probab|!|ty for.fmdm.g candldetes for'the optimal
setting values of the visiting weight of the orbits between theP0ints, and searching quickly in a feasible region. Namely,
two cases. In a comparison of Figgbpand 3b), the setting this method does not have trade-off relation between search-
values for case 1 can be seen to reflect the value of th#@g weight and searching speed.
objective function more sensitively than those for case 2. In the NoseHoover equation used in this work, coordi-
[That is, much larger values for the visiting weight are as-nates of a physical system are regarded as the decision vari-
signed to areas whefd has low values. The points for the ables in a given optimization problem and a potential func-
highest peak, second peak, and third peak in Figs. &d tion is linked to the objective function. To set the visiting
3(b) correspond to the points for the global minimum, sec-weight of the orbits to the equation independently from the
ond lowest minimum, and third minimum df, respec- speed of the orbits, the potential function has been replaced
tively.] The simulation results unt\=10° time steps show by —k,T times the logarithm of an arbitrary density function
that the orbit in case 1 certainly visits near the optilighd-  for coordinate variables. It has been demonstrated that the
bal minima) point at a high frequency of visits, while the gensity function gives an invariant density with respect to the
orbit in case 2 visits all three minimal points more equally. coordinate variables and that the function can determine the
This means that a difference in the setting value of the Visysjiing weight of the orbits. To search with a high probabil-
iting weight of the orbits indeed affects the frequency ofyy ¢ finding candidates for the minimal points, a method

visits. Such an effect appeared within a shorter length 0tor setting the density function has been introduced so that

time. Figure 5 showe trajectories foMO‘j’ time steps for the visiting weight has high values at areas where the objec-
the orbits and the minimal points otherwise determined. As. . )
ive function has low values. The speed of the orbits can be

indicated in Figs. and 3a), behavior for searchin : : .
minima. in caseglFig:ﬂ)S(a)] isgdiz‘ferent from that in caseg set by an arbitrary parameter. With these devices and an

[Fig. 5(b)] assumption of ergodicity, it has been shown that the values

Case 1 and case 3 are different concerning the settingf the Visiting weight and speed of the orbits can be set
value of the speed of the orbits. The trajectories show thag'Pitrarily and independently, and that these values are real-
searching in case [Fig. 5a] was performed over a larger |ged by a long-time limit and a long-time average, respec-
area than that done in casdRg. 5(c)] for the same period tively.
of time. This means that the searching speed in case 1, which For an objective function given by the sum of three
employs a larger setting value for the speed, is indeed largépaussian form functions on a plane, numerical simulations
than that in case 3. were carried out. The finite-time validity of the orbits’ prop-

The theoretical formulation of the properties of the orbitserties formulated using the long-time limits has been veri-
has been done on the assumption that the system is ergodfed. Furthermore, in simulations for several setting values of
A mathematical proof of ergodicity for a given system is the visiting weight and speed of the orbits, the expected ef-
widely known to be difficult. The agreement between simu-fect of differences in those values on the frequency of visits
lation results and setting values shown above for both thend on searching speed has been confirmed. These results
visiting weight and the speed of the orbits supports ergodicshow the possibilities for efficient resolution using the pro-

Ity in this system. In a naive Sense, ergodicity can be_ EXposed method on actual Optimizaﬂon prob|ems_
pected as the system grows complicated., the system is

not an ideal one such as an integrable system, it consists of
many degrees of freedom, or it has strong nonlineparithis

is also supported in numerical studies on the Ndsever

equation and the Nosequation[21-23. Accordingly, er- The author thanks Dr. Umebu for valuable discussions,
godicity is expected for more complicated systems than thatnd his encouragement and critical reading of the first ver-
used in the present study. For giverand pg, under adop- sion of this manuscript. Author also thanks Kazuyoshi
tion of Eq. (4), the effect of parameter® and 8 on the  Minami, Shigeru Kameda, Shoichi Masuda, and Ichiro Su-
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